research

Contextual approach to quantum mechanics and the theory of the fundamental prespace

Abstract

We constructed a Hilbert space representation of a contextual Kolmogorov model. This representation is based on two fundamental observables -- in the standard quantum model these are position and momentum observables. This representation has all distinguishing features of the quantum model. Thus in spite all ``No-Go'' theorems (e.g., von Neumann, Kochen and Specker,..., Bell) we found the realist basis for quantum mechanics. Our representation is not standard model with hidden variables. In particular, this is not a reduction of quantum model to the classical one. Moreover, we see that such a reduction is even in principle impossible. This impossibility is not a consequence of a mathematical theorem but it follows from the physical structure of the model. By our model quantum states are very rough images of domains in the space of fundamental parameters - PRESPACE. Those domains represent complexes of physical conditions. By our model both classical and quantum physics describe REDUCTION of PRESPACE-INFORMATION. Quantum mechanics is not complete. In particular, there are prespace contexts which can be represented only by a so called hyperbolic quantum model. We predict violations of the Heisenberg's uncertainty principle and existence of dispersion free states.Comment: Plenary talk at Conference "Quantum Theory: Reconsideration of Foundations-2", Vaxjo, 1-6 June, 200

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/12/2019