Asymmetrical Bi-RNN for pedestrian trajectory encoding

Abstract

Pedestrian motion behavior involves a combination of individual goals and social interactions with other agents. In this article, we present a non-symmetrical bidirectional recurrent neural network architecture called U-RNN as a sequence encoder and evaluate its relevance to replace LSTMs for various forecasting models. Experimental results on the Trajnet++ benchmark show that the U-LSTM variant can yield better results regarding every available metric (ADE, FDE, Collision rate) than common LSTMs sequence encoders for a variety of approaches and interaction modules. Our implementation of the asymmetrical Bi-RNNs for the Trajnet++ benchmark is available at: github.com/JosephGesnouin/Asymmetrical-Bi-RNNs-to-encode-pedestrian-trajectoriesComment: 7 page

    Similar works

    Full text

    thumbnail-image

    Available Versions