research

Decoherence in Discrete Quantum Walks

Abstract

We present an introduction to coined quantum walks on regular graphs, which have been developed in the past few years as an alternative to quantum Fourier transforms for underpinning algorithms for quantum computation. We then describe our results on the effects of decoherence on these quantum walks on a line, cycle and hypercube. We find high sensitivity to decoherence, increasing with the number of steps in the walk, as the particle is becoming more delocalised with each step. However, the effect of a small amount of decoherence can be to enhance the properties of the quantum walk that are desirable for the development of quantum algorithms, such as fast mixing times to uniform distributions.Comment: 15 pages, Springer LNP latex style, submitted to Proceedings of DICE 200

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 18/02/2019