Following the discussion -- in state space language -- presented in a
preceding paper, we work on the passage from the phase space description of a
degree of freedom described by a finite number of states (without classical
counterpart) to one described by an infinite (and continuously labeled) number
of states. With that it is possible to relate an original Schwinger idea to the
Pegg and Barnett approach to the phase problem. In phase space language, this
discussion shows that one can obtain the Weyl-Wigner formalism, for both
Cartesian {\em and} angular coordinates, as limiting elements of the discrete
phase space formalism.Comment: Subm. to J. Phys A: Math and Gen. 7 pages, sequel of quant-ph/0108031
(which is to appear on J.Phys A: Math and Gen