In this thesis, we study the application of symplectic geometry, regular and singular, to symplectic dynamical systems.We start with a motivating case: the relation between symplectic foliations and global transverse Poincaré sections, showing that meaningful dynamical information can be gleaned by simple observations on the geometry of the phase space - in this case, the existence of a symplectic foliation on a hypersurface of the phase space.
We then go on study dynamical systems of particular importance in geometry - those given by a group action on a manifold. In particular, we consider a singular symplectic manifold (specifically, a manifold equipped with a symplectic form which blows up in a controlled manner on a hypersurface of that manifold, namely, a b-symplectic form) with a group action preserving the geometry and give a b-symplectic slice theorem which provides an equivariant normal form of the b-symplectic form in the neighbourhood of an orbit. Particular examples of b-symplectic group symmetries are then explored: those given by the cotangent lift of group translation on so-called b-Lie groups.
The second part of this thesis focuses on symplectic and b-symplectic dynamical systems coming from celestial mechanics. In particular, the separatrix map of the stable and unstable manifolds of the fixed point at infinity of the planar circular restricted three-body problem is examined and an estimate of the width of the stochastic layer is given - that is the existence of a K.A.M. torus which acts as a boundary to bounded motions is proved. Due to the delicate nature of the problem - namely issues coming from the parabolic nature of the fixed point and exponentially small nature of the splitting, careful control of the errors of the separatrix map is paramount. This is achieved by employing geometric methods, namely, by taking full advantage of generating functions which exist by virtue of the symplectic nature of the system.
Finally, motivated by the important role of symplectic geometry in the systems of celestial mechanics in mind, we give examples of degenerate and singular symplectic structures occurring in systems of celestial mechanics which cannot be equipped with a symplectic form.En esta tesis, estudiamos una aplicación de la geometría simpléctica, regular y singular, a sistemas dinámicos simplécticos. Comenzamos con un caso motivador: la relación entre foliaciones simplécticas y secciones transversales de Poincaré globales, que muestra que se puede obtener información significativa de la dinámica mediante simples observaciones sobre la geometría del espacio de fase, en este caso, la existencia de una foliación simpléctica en una hipersuperficie del espacio de fase. Luego continuamos estudiando sistemas dinámicos de particular importancia en geometría, dados por una acción de grupo sobre una variedad. En particular, consideramos una variedad simpléctica singular (específicamente, una variedad equipada con una forma simpléctica que explota de manera controlada en una hipersuperficie de esa variedad, es decir, una forma b-simpléctica ) con una acción de grupo que preserva la geometría y damos un teorema de rebanada b-simpléctico que proporciona una forma normal equivariante de la forma b-simpléctica en una vecindad de una órbita. Luego se exploran ejemplos particulares de simetrías de grupo b-simplécticas: las dadas por el levantamiento cotangente de la translación (grupal) en los llamados b-grupos de Lie. La segunda parte de esta tesis se enfoca en sistemas dinámicos simplécticos y b-simplécticos provenientes de la mecánica celeste. En particular, se examina el "separatrix map" de variedades estables e inestables del punto fijo al infinito del problema de los tres cuerpos restringido circular plano, y se da una estimación del ancho de la capa estocástica, es decir, la existencia de un toro K.A.M. que actúa como frontera para movimientos acotados. Debido a la naturaleza delicada del problema, es decir, los problemas que provienen de la naturaleza parabólica del punto fijo y la naturaleza exponencialmente pequeña de la separación, el control cuidadoso de los errores del "separatrix map" es primordial. Esto se logra empleando métodos geométricos, es decir, aprovechando al máximo las funciones generadoras que existen en virtud de la naturaleza simpléctica del sistema. Finalmente, motivados por el importante papel de la geometría simpléctica en los sistemas de mecánica celeste en mente, damos ejemplos de estructuras simplécticas degeneradas y singulares que ocurren en sistemas de mecánica celeste que no pueden equiparse con una forma simpléctica.Postprint (published version