research

Intermolecular energy transfer in the presence of dispersing and absorbing media

Abstract

By making use of the Green function concept of quantization of the electromagnetic field in Kramers--Kronig consistent media, a rigorous quantum mechanical derivation of the rate of intermolecular energy transfer in the presence of arbitrarily shaped, dispersing, and absorbing material bodies is given. Applications to bulk material, multi-slab planar structures, and microspheres are studied. It is shown that when the two molecules are near a planar interface, then surface-guided waves can strongly affect the energy transfer and essentially modify both the (F\"{o}rster) short-range R6R^{-6} dependence of the transfer rate and the long-range R2R^{-2} dependence, which are typically observed in free space. In particular, enhancement (inhibition) of energy transfer can be accompanied by inhibition (enhancement) of donor decay. Results for four- and five-layered planar structures are given and compared with experimental results. Finally, the energy transfer between two molecules located at diametrically opposite positions outside a microsphere is briefly discussed.Comment: 13 pages, 7 figures, RevTe

    Similar works