research

Nonadditive measure and quantum entanglement in a class of mixed states of N^n-system

Abstract

Through the generalization of Khinchin's classical axiomatic foundation, a basis is developed for nonadditive information theory. The classical nonadditive conditional entropy indexed by the positive parameter q is introduced and then translated into quantum information. This quantity is nonnegative for classically correlated states but can take negative values for entangled mixed states. This property is used to study quantum entanglement in the parametrized Werner-Popescu-like state of an N^n-system, that is, an n-partite N-level system. It is shown how the strongest limitation on validity of local realism (i.e., separability of the state) can be obtained in a novel manner

    Similar works

    Full text

    thumbnail-image

    Available Versions