Through the generalization of Khinchin's classical axiomatic foundation, a
basis is developed for nonadditive information theory. The classical
nonadditive conditional entropy indexed by the positive parameter q is
introduced and then translated into quantum information. This quantity is
nonnegative for classically correlated states but can take negative values for
entangled mixed states. This property is used to study quantum entanglement in
the parametrized Werner-Popescu-like state of an N^n-system, that is, an
n-partite N-level system. It is shown how the strongest limitation on validity
of local realism (i.e., separability of the state) can be obtained in a novel
manner