Tungstate (VI) sorption on hematite: An in situ ATR-FTIR probe on the mechanism

Abstract

Owing to the suspected toxicity and carcinogenicity of tungstate (VI) oxyanions [i.e. mono tungstate and several polytungstate, generally represented by W (VI)], the environmental fate of W (VI) has been widely studied. Sorption is regarded as a major mechanism by which W (VI) species are retained in the solid/water interface. Iron (hydr)oxides have been considered important environmental sinks for W (VI) species. Here we report sorption mechanisms of W (VI) on a common iron oxide mineral-hematite under environmentally relevant solution properties using in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopic probes. Initial W (VI) loadings varied from 10 to 200 μM at fixed pH values ranged from 4.6 to 8.1. For pH envelop (pHs = 4.6, 5.0, 5.5, 6.0, 6.5, 7.5, and 8.1) experiments, fixed W (VI) concentrations (i.e. 10 & 200 μM) were used to understand the effects of pH. The results indicated that at acidic pH values (pH \u3c 6.0) the sorbed polytungstate surface species are prominent at 200 μM initial W (VI) conc. The pH envelop experiments revealed that sorbed polytungstates can be present even at lower initial W (VI) conc. (i.e. 10 μM) at pH values \u3c5.5. Overall, our in situ ATR-FTIR experiments indicated that W (VI) forms inner-sphere type bonds on hematite surface and the strength of the interaction increases with decreasing pH. In addition, initial W (VI) concentration affected the sorption mechanisms of W (VI) on hematite. Our study will aid the molecular level understanding of W (VI) retention on iron oxide surfaces

    Similar works