The standard generic quantum computer model is studied analytically and
numerically and the border for emergence of quantum chaos, induced by
imperfections and residual inter-qubit couplings, is determined. This
phenomenon appears in an isolated quantum computer without any external
decoherence. The onset of quantum chaos leads to quantum computer hardware
melting, strong quantum entropy growth and destruction of computer operability.
The time scales for development of quantum chaos and ergodicity are determined.
In spite the fact that this phenomenon is rather dangerous for quantum
computing it is shown that the quantum chaos border for inter-qubit coupling is
exponentially larger than the energy level spacing between quantum computer
eigenstates and drops only linearly with the number of qubits n. As a result
the ideal multi-qubit structure of the computer remains rather robust against
imperfections. This opens a broad parameter region for a possible realization
of quantum computer. The obtained results are related to the recent studies of
quantum chaos in such many-body systems as nuclei, complex atoms and molecules,
finite Fermi systems and quantum spin glass shards which are also reviewed in
the paper.Comment: Lecture at Nobel symposium on "Quantum chaos", June 2000, Sweden;
revtex, 10 pages, 9 figure