Some new identities for quantum variance and covariance involving commutators
are presented, in which the density matrix and the operators are treated
symmetrically. A measure of entanglement is proposed for bipartite systems,
based on covariance. This works for two- and three-component systems but
produces ambiguities for multicomponent systems of composite dimension. Its
relationship to angular momentum dispersion for symmetric symmetric spin states
is described.Comment: 30 pages, Latex, to appear in J Phys