We study the connection between the evolutionary replicator dynamics and the
number of Nash equilibria in large random bi-matrix games. Using techniques of
disordered systems theory we compute the statistical properties of both, the
fixed points of the dynamics and the Nash equilibria. Except for the special
case of zero-sum games one finds a transition as a function of the so-called
co-operation pressure between a phase in which there is a unique stable fixed
point of the dynamics coinciding with a unique Nash equilibrium, and an
unstable phase in which there are exponentially many Nash equilibria with
statistical properties different from the stationary state of the replicator
equations. Our analytical results are confirmed by numerical simulations of the
replicator dynamics, and by explicit enumeration of Nash equilibria.Comment: 9 pages, 2x2 figure