Transforming Growth Factor-beta (TGF-beta) signalling is an important
regulator of cellular growth and differentiation. The principal intracellular
mediators of TGF-beta signalling are the Smad proteins, which upon TGF-beta
stimulation accumulate in the nucleus and regulate transcription of target
genes. To investigate the mechanisms of Smad nuclear accumulation, we developed
a simple mathematical model of canonical Smad signalling. The model was built
using both published data and our experimentally determined cellular Smad
concentrations (isoforms 2, 3, and 4). We found in mink lung epithelial cells
that Smad2 (8.5-12 x 10^4 molecules/cell) was present in similar amounts to
Smad4 (9.3-12 x 10^4 molecules/cell), while both were in excess of Smad3
(1.1-2.0 x 10^4 molecules/cell). Variation of the model parameters and
statistical analysis showed that Smad nuclear accumulation is most sensitive to
parameters affecting the rates of RSmad phosphorylation and dephosphorylation
and Smad complex formation/dissociation in the nucleus. Deleting Smad4 from the
model revealed that rate-limiting phospho-R-Smad dephosphorylation could be an
important mechanism for Smad nuclear accumulation. Furthermore, we observed
that binding factors constitutively localised to the nucleus do not efficiently
mediate Smad nuclear accumulation if dephosphorylation is rapid. We therefore
conclude that an imbalance in the rates of R-Smad phosphorylation and
dephosphorylation is likely an important mechanism of Smad nuclear accumulation
during TGF-beta signalling.Comment: To appear in IEE Proceedings Systems Biology. 12 pages of text, 36
pages tota