research

Selective advantage for multicellular replicative strategies: A two-cell example

Abstract

This paper develops a quasispecies model where cells can adopt a two-cell survival strategy. Within this strategy, pairs of cells join together, at which point one of the cells sacrifices its own replicative ability for the sake of the other cell. We develop a simplified model for the evolutionary dynamics of this process, allowing us to solve for the steady-state using standard approaches from quasispecies theory. We find that our model exhibits two distinct regimes of behavior: At low concentrations of limiting resource, the two-cell strategy outcompetes the single-cell survival strategy, while at high concentrations of limiting resource, the single-cell survival strategy dominates. Associated with the two solution regimes of our model is a localization to delocalization transition over the portion of the genome coding for the multicell strategy, analogous to the error catastrophe in standard quasispecies models. The existence of such a transition indicates that multicellularity can emerge because natural selection does not act on specific cells, but rather on replicative strategies. Within this framework, individual cells become the means by which replicative strategies are propagated. Such a framework is therefore consistent with the concept that natural selection does not act on individuals, but rather on populations.Comment: 4 pages, 2 figures, to be submitted to Physical Review Letter

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020
    Last time updated on 27/12/2021