We study genetic switches formed from pairs of mutually repressing operons.
The switch stability is characterised by a well defined lifetime which grows
sub-exponentially with the number of copies of the most-expressed transcription
factor, in the regime accessible by our numerical simulations. The stability
can be markedly enhanced by a suitable choice of overlap between the upstream
regulatory domains. Our results suggest that robustness against biochemical
noise can provide a selection pressure that drives operons, that regulate each
other, together in the course of evolution.Comment: 4 pages, 5 figures, RevTeX