Biological systems rely on robust internal information processing: Survival
depends on highly reproducible dynamics of regulatory processes. Biological
information processing elements, however, are intrinsically noisy (genetic
switches, neurons, etc.). Such noise poses severe stability problems to system
behavior as it tends to desynchronize system dynamics (e.g. via fluctuating
response or transmission time of the elements). Synchronicity in parallel
information processing is not readily sustained in the absence of a central
clock. Here we analyze the influence of topology on synchronicity in networks
of autonomous noisy elements. In numerical and analytical studies we find a
clear distinction between non-reliable and reliable dynamical attractors,
depending on the topology of the circuit. In the reliable cases, synchronicity
is sustained, while in the unreliable scenario, fluctuating responses of single
elements can gradually desynchronize the system, leading to non-reproducible
behavior. We find that the fraction of reliable dynamical attractors strongly
correlates with the underlying circuitry. Our model suggests that the observed
motif structure of biological signaling networks is shaped by the biological
requirement for reproducibility of attractors.Comment: 7 pages, 7 figure