Sequential Modelling and Inference of High-frequency Limit Order Book with State-space Models and Monte Carlo Algorithms

Abstract

The high-frequency limit order book (LOB) market has recently attracted increasing research attention from both the industry and the academia as a result of expanding algorithmic trading. However, the massive data throughput and the inherent complexity of high-frequency market dynamics also present challenges to some classic statistical modelling approaches. By adopting powerful state-space models from the field of signal processing as well as a number of Bayesian inference algorithms such as particle filtering, Markov chain Monte Carlo and variational inference algorithms, this thesis presents my extensive research into the high-frequency limit order book covering a wide scope of topics. Chapter 2 presents a novel construction of the non-homogeneous Poisson process to allow online intensity inference of limit order transactions arriving at a central exchange as point data. Chapter 3 extends a baseline jump diffusion model for market fair-price process to include three additional model features taken from real-world market intuitions. In Chapter 4, another price model is developed to account for both long-term and short-term diffusion behaviours of the price process. This is achieved by incorporating multiple jump-diffusion processes each exhibiting a unique characteristic. Chapter 5 observes the multi-regime nature of price diffusion processes as well as the non-Markovian switching behaviour between regimes. As such, a novel model is proposed which combines the continuous-time state-space model, the hidden semi-Markov switching model and the non-parametric Dirichlet process model. Additionally, building upon the general structure of the particle Markov chain Monte Carlo algorithm, I further propose an algorithm which achieves sequential state inference, regime identification and regime parameters learning requiring minimal prior assumptions. Chapter 6 focuses on the development of efficient parameter-learning algorithms for state-space models and presents three algorithms each demonstrating promising results in comparison to some well-established methods. The models and algorithms proposed in this thesis not only are practical tools for analysing high-frequency LOB markets, but can also be applied in various areas and disciplines beyond finance

    Similar works