research

Universal RR--matrices for non-standard (1+1) quantum groups

Abstract

A universal quasitriangular RR--matrix for the non-standard quantum (1+1) Poincar\'e algebra Uziso(1,1)U_ziso(1,1) is deduced by imposing analyticity in the deformation parameter zz. A family gμg_\mu of ``quantum graded contractions" of the algebra Uziso(1,1)Uziso(1,1)U_ziso(1,1)\oplus U_{-z}iso(1,1) is obtained; this set of quantum algebras contains as Hopf subalgebras with two primitive translations quantum analogues of the two dimensional Euclidean, Poincar\'e and Galilei algebras enlarged with dilations. Universal RR--matrices for these quantum Weyl algebras and their associated quantum groups are constructed.Comment: 12 pages, LaTeX

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 27/02/2019