research

Fast Switching Ferroelectric Materials for Accelerator Applications

Abstract

Fast switching (< 10 nsec) measurement results on the recently developed BST(M) (barium strontium titanium oxide composition with magnesium-based additions) ferroelectric materials are presented. These materials can be used as the basis for new advanced technology components suitable for high-gradient accelerators. A ferroelectric ceramic has an electric field-dependent dielectric permittivity that can be altered by applying a bias voltage. Ferroelectric materials offer significant benefits for linear collider applications, in particular, for switching and control elements where a very short response time of <10 nsec is required. The measurement results presented here show that the new BST(M) ceramic exhibits a high tunability factor: a bias field of 40-50 kV/cm reduces the permittivity by a factor of 1.3-1.5. The recently developed technology of gold biasing contact deposition on large diameter (110 cm) thin wall ferroelectric rings allowed ~few nsec switching times in witness sample experiments. The ferroelectric rings can be used at high pulsed power (tens of megawatts) for X-band components as well as at high average power in the range of a few kilowatts for the L-band phase-shifter, under development for optimization of the ILC rf coupling. Accelerator applications include fast active X-band and Ka-band high-power ferroelectric switches, high-power X-band and L-band phase shifters, and tunable dielectric-loaded accelerating structures.Comment: 7 pages, 6 figures, submitted to Proceedings of 2006 Advanced Accelerator Concepts Worksho

    Similar works

    Available Versions

    Last time updated on 04/12/2019
    Last time updated on 11/12/2019
    Last time updated on 01/04/2019
    Last time updated on 04/12/2019
    Last time updated on 04/12/2019
    Last time updated on 05/06/2019
    Last time updated on 11/12/2019
    Last time updated on 11/12/2019