research

R-matrix calculation of differential cross sections for low-energy electron collisions with ground and electronically excited state O2 molecules

Abstract

Differential cross sections for electron collisions with the O2_2 molecule in its ground X3Σg{X}^{3}\Sigma_g^- state, as well as excited a1Δg{a}^{1}\Delta_g and b1Σg+{b}^{1}\Sigma_g^+ states are calculated. As previously, the fixed-bond R-matrix method based on state-averaged complete active space SCF orbitals is employed. In additions to elastic scattering of electron with the O2_2 X3Σg{X}^{3}\Sigma_g^-, a1Δg{a}^{1}\Delta_g and b1Σg+{b}^{1}\Sigma_g^+ states, electron impact excitation from the X3Σg{X}^{3}\Sigma_g^- state to the a1Δg{a}^{1}\Delta_g and b1Σg+{b}^{1}\Sigma_g^+ states as well as '6 eV states' of c1Σu{c}^{1}\Sigma_u^{-}, A3Δu{A'}^{3}\Delta_u and A3Σu+{A}^{3}\Sigma_u^{+} states is studied. Differential cross sections for excitation to the '6 eV states' have not been calculated previously. Electron impact excitation to the b1Σg+{b}^{1}\Sigma_g^+ state from the metastable a1Δg{a}^{1}\Delta_g state is also studied. For electron impact excitation from the O2_2 X3Σg{X}^{3}\Sigma_g^- state to the b1Σg+{b}^{1}\Sigma_g^+ state, our results agree better with the experimental measurements than previous theoretical calculations. Our cross sections show angular behaviour similar to the experimental ones for transitions from the X3Σg{X}^{3}\Sigma_g^- state to the '6 eV states', although the calculated cross sections are up to a factor two larger at large scattering angles. For the excitation from the a1Δg{a}^{1}\Delta_g state to the b1Σg+{b}^{1}\Sigma_g^+ state, our results marginally agree with the experimental data except for the forward scattering direction

    Similar works

    Available Versions

    Last time updated on 01/04/2019