CORE
🇺🇦
make metadata, not war
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Microwave-assisted conversion of simple sugars and waste coffee grounds into 5-Hydroxymethylfurfural in a highly aqueous DMSO solvent system catalyzed by a combination of Al(NO3)3 and H2SO4
Authors
Francisco C. Franco
Rey Joseph J. Ganado
Derrick Ethelbhert C. Yu
Publication date
1 January 2019
Publisher
Animo Repository
Abstract
5-Hydroxymethylfurfural (HMF), an organic platform chemical, used as a precursor of various industrial chemicals, was synthesized from waste coffee grounds (WCG), glucose, and fructose, using Al(NO3)3 and H2SO4 as catalysts, in a highly aqueous binary solvent system consisting of water and dimethyl sulfoxide (DMSO) and a conventional microwave as the heating system. The effect of tuning the water/DMSO ratio was first studied. Results showed that the highest HMF yield can be obtained using 6:4, 5:5, and 7:3 water/DMSO ratios for WCG, glucose, and fructose, respectively. A response surface methodology was also employed to determine the interactions among catalyst loading, reaction time, and microwave power and their effects HMF yield. Yields of up to 13.65% (WCG), 28.50% (glucose), and 60.8% (fructose) were observed. This study demonstrates the use of WCG as an HMF precursor and the tuning of several experimental factors to increase the HMF yield from simple sugars and WCG. © 2019 American Chemical Society
Similar works
Full text
Available Versions
Animo Repository - De La Salle University Research
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:animorepository.dlsu.edu.p...
Last time updated on 03/12/2021