The phenomenon of apparent slip in micro-channel flows is analyzed by means
of a two-phase mesoscopic lattice Boltzmann model including non-ideal
fluid-fluid and fluid-wall interactins. The weakly-inhomogeneous limit of this
model is solved analytically.
The present mesoscopic approach permits to access much larger scales than
molecular dynamics, and comparable with those attained by continuum methods.
However, at variance with the continuum approach, the existence of a gas layer
near the wall does not need to be postulated a priori, but emerges naturally
from the underlying non-ideal mesoscopic dynamics. It is therefore argued that
a mesoscopic Lattice Boltzmann approach with non-ideal fluid-fluid and
fluid-wall interactions might achieve an optimal compromise between physical
realism and computational efficiency for the study of channel micro-flows.Comment: 5 pages, 3 figure