Extending the central concept of recurrence times for a point process to
recurrent events in space-time allows us to characterize seismicity as a record
breaking process using only spatiotemporal relations among events. Linking
record breaking events with edges between nodes in a graph generates a complex
dynamical network isolated from any length, time or magnitude scales set by the
observer. For Southern California, the network of recurrences reveals new
statistical features of seismicity with robust scaling laws. The rupture length
and its scaling with magnitude emerges as a generic measure for distance
between recurrent events. Further, the relative separations for subsequent
records in space (or time) form a hierarchy with unexpected scaling properties