Clusters of polycyclic aromatic hydrocarbon (PAH) molecules are modelled
using explicit all-atom potentials using a rigid body approximation. The PAH's
considered range from pyrene (C10H8) to circumcoronene (C54H18), and clusters
containing between 2 and 32 molecules are investigated. In addition to the
usual repulsion-dispersion interactions, electrostatic point-charge
interactions are incorporated, as obtained from density functional theory
calculations. The general electrostatic distribution in neutral or singly
charged PAH's is reproduced well using a fluctuating charges analysis, which
provides an adequate description of the multipolar distribution. Global
optimization is performed using a variety of methods, including basin-hopping
and parallel tempering Monte Carlo. We find evidence that stacking the PAH
molecules generally yields the most stable motif. A structural transition
between one-dimensional stacks and three-dimensional shapes built from mutiple
stacks is observed at larger sizes, and the threshold for this transition
increases with the size of the monomer. Larger aggregates seem to evolve toward
the packing observed for benzene in bulk.Difficulties met in optimizing these
clusters are analysed in terms of the strong anisotropy of the molecules. We
also discuss segregation in heterogeneous clusters and vibrational properties
in the context of astrophysical observations.Comment: 12 pages, 7 figure