A program RCFP will be presented for calculating standard quantities in the
decomposition of many-electron matrix elements in atomic structure theory. The
list of quantities wich are supported by the present program includes the
coefficients of fractional parentage, the reduced coefficients of fractional
parentage, the reduced matrix elements of the unit operator T^{(k)} as well as
the completely reduced matrix elements of the operator W^{(k_jk_q)} in
jj-coupling. These quantities are now available for all subshells (nj) with j
\leq 9/2 including partially filled 9/2-shells. Our program is based on a
recently developed new approach on the spin-angular integration which combines
second quantization and quasispin methods with the theory of angular momentum
in order to obtain a more efficient evaluation of many-electron matrix
elements. An underlying Fortran 90/95 module can directly be used also in
(other) atomic structure codes to accelerate the computation for open-shell
atoms and ions