Distributed Planning for Self-Organizing Production Systems

Abstract

Für automatisierte Produktionsanlagen gibt es einen fundamentalen Tradeoff zwischen Effizienz und Flexibilität. In den meisten Fällen sind die Abläufe nicht nur durch den physischen Aufbau der Produktionsanlage, sondern auch durch die spezielle zugeschnittene Programmierung der Anlagensteuerung fest vorgegeben. Änderungen müssen aufwändig in einer Vielzahl von Systemen nachgezogen werden. Das macht die Herstellung kleiner Stückzahlen unrentabel. In dieser Dissertation wird ein Ansatz entwickelt, um eine automatische Anpassung des Verhaltens von Produktionsanlagen an wechselnde Aufträge und Rahmenbedingungen zu erreichen. Dabei kommt das Prinzip der Selbstorganisation durch verteilte Planung zum Einsatz. Die aufeinander aufbauenden Ergebnisse der Dissertation sind wie folgt: 1. Es wird ein Modell von Produktionsanlagen entwickelt, dass nahtlos von der detaillierten Betrachtung physikalischer Produktionsprozesse bis hin zu Lieferbeziehungen zwischen Unternehmen skaliert. Im Vergleich zu existierenden Modellen von Produktionsanlagen werden weniger limitierende Annahmen gestellt. In diesem Sinne ist der Modellierungsansatz ein Kandidat für eine häufig geforderte "Theorie der Produktion". 2. Für die so modellierten Szenarien wird ein Algorithmus zur Optimierung der nebenläufigen Abläufe entwickelt. Der Algorithmus verbindet Techniken für die kombinatorische und die kontinuierliche Optimierung: Je nach Detailgrad und Ausgestaltung des modellierten Szenarios kann der identische Algorithmus kombinatorische Fertigungsfeinplanung (Scheduling) vornehmen, weltweite Lieferbeziehungen unter Einbezug von Unsicherheiten und Risiko optimieren und physikalische Prozesse prädiktiv regeln. Dafür werden Techniken der Monte-Carlo Baumsuche (die auch bei Deepminds Alpha Go zum Einsatz kommen) weiterentwickelt. Durch Ausnutzung zusätzlicher Struktur in den Modellen skaliert der Ansatz auch auf große Szenarien. 3. Der Planungsalgorithmus wird auf die verteilte Optimierung durch unabhängige Agenten übertragen. Dafür wird die sogenannte "Nutzen-Propagation" als Koordinations-Mechanismus entwickelt. Diese ist von der Belief-Propagation zur Inferenz in Probabilistischen Graphischen Modellen inspiriert. Jeder teilnehmende Agent hat einen lokalen Handlungsraum, in dem er den Systemzustand beobachten und handelnd eingreifen kann. Die Agenten sind an der Maximierung der Gesamtwohlfahrt über alle Agenten hinweg interessiert. Die dafür notwendige Kooperation entsteht über den Austausch von Nachrichten zwischen benachbarten Agenten. Die Nachrichten beschreiben den erwarteten Nutzen für ein angenommenes Verhalten im Handlungsraum beider Agenten. 4. Es wird eine Beschreibung der wiederverwendbaren Fähigkeiten von Maschinen und Anlagen auf Basis formaler Beschreibungslogiken entwickelt. Ausgehend von den beschriebenen Fähigkeiten, sowie der vorliegenden Aufträge mit ihren notwendigen Produktionsschritten, werden ausführbare Aktionen abgeleitet. Die ausführbaren Aktionen, mit wohldefinierten Vorbedingungen und Effekten, kapseln benötigte Parametrierungen, programmierte Abläufe und die Synchronisation von Maschinen zur Laufzeit. Die Ergebnisse zusammenfassend werden Grundlagen für flexible automatisierte Produktionssysteme geschaffen -- in einer Werkshalle, aber auch über Standorte und Organisationen verteilt -- welche die ihnen innewohnenden Freiheitsgrade durch Planung zur Laufzeit und agentenbasierte Koordination gezielt einsetzen können. Der Bezug zur Praxis wird durch Anwendungsbeispiele hergestellt. Die Machbarkeit des Ansatzes wurde mit realen Maschinen im Rahmen des EU-Projekts SkillPro und in einer Simulationsumgebung mit weiteren Szenarien demonstriert

    Similar works