Spectral-Kinetic Properties and Energy Transfer in Nanoparticles of Y<inf>0.5–x</inf>Ce<inf>0.5</inf>Tb<inf> x</inf>F<inf>3</inf> Solid Solution

Abstract

© 2020, Springer Science+Business Media, LLC, part of Springer Nature. Crystalline nanoparticles of Y0.5–xCe0.5TbxF3, doped with various concentrations (x = 0, 0.005, 0.01, 0.05, 0.1, 0.15, and 0.2) of Tb3+ ions were synthesized by co-precipitation. The crystal structure and chemical composition of nanoparticles were studied using transmission electron microscopy, scanning electron microscopy, and X-ray diffractometry. The obtained nanoparticles of solid solutions had an elliptical shape with a size of 10–15 nm along the long axis and good crystallinity with the structure of a CeF3 crystal. The spectral-kinetic properties of the obtained nanoparticles, and the effect of the concentration of Tb3+ activator ions on the energy transfer from Ce3+ to Tb3+ ions were investigated. Energy transfer from Ce3+ to Tb3+ ions in nanocrystals of the Y0.5–xCe0.5TbxF3 solid solutions occurs mainly through the dipole–dipole interaction. The results of evaluating the efficiency of energy transfer from Ce3+ to Tb3+ ions show its increase with increasing concentration of Tb3+ ions

    Similar works

    Full text

    thumbnail-image