This paper deals with the spectral element modeling of seismic wave
propagation at the global scale. Two aspects relevant to low-frequency studies
are particularly emphasized. First, the method is generalized beyond the
Cowling approximation in order to fully account for the effects of
self-gravitation. In particular, the perturbation of the gravity field outside
the Earth is handled by a projection of the spectral element solution onto the
basis of spherical harmonics. Second, we propose a new formulation inside the
fluid which allows to account for an arbitrary density stratification. It is
based upon a decomposition of the displacement into two scalar potentials, and
results in a fully explicit fluid-solid coupling strategy. The implementation
of the method is carefully detailed and its accuracy is demonstrated through a
series of benchmark tests.Comment: Sent to Geophysical Journal International on July 29, 200