Silicon detectors in particle physics experiments at the new accelerators or
in space missions for physics goals will be exposed to extreme radiation
conditions. The principal obstacles to long-term operation in these
environments are the changes in detector parameters, consequence of the
modifications in material properties after irradiation. The phenomenological
model developed in the present paper is able to explain quantitatively, without
free parameters, the production of primary defects in silicon after particle
irradiation and their evolution toward equilibrium, for a large range of
generation rates of primary defects. Vacancy-interstitial annihilation,
interstitial migration to sinks, divacancy and vacancy-impurity complex (VP,
VO, V2O, CiOi and CiCs) formation are taken into account. The effects of
different initial impurity concentrations of phosphorus, oxygen and carbon, as
well as of irradiation conditions are systematically studied. The correlation
between the rate of defect production, the temperature and the time evolution
of defect concentrations is also investigated.Comment: 14 pages, 8 figures, submitted to Nucl. Instrum. Meth. Phys. Res.