research

Multifractal characterisation of length sequences of coding and noncoding segments in a complete genome

Abstract

The coding and noncoding length sequences constructed from a complete genome are characterised by multifractal analysis. The dimension spectrum DqD_{q} and its derivative, the 'analogous' specific heat CqC_{q}, are calculated for the coding and noncoding length sequences of bacteria, where qq is the moment order of the partition sum of the sequences. From the shape of the % D_{q} and CqC_{q} curves, it is seen that there exists a clear difference between the coding/noncoding length sequences of all organisms considered and a completely random sequence. The complexity of noncoding length sequences is higher than that of coding length sequences for bacteria. Almost all DqD_{q} curves for coding length sequences are flat, so their multifractality is small whereas almost all DqD_{q} curves for noncoding length sequences are multifractal-like. We propose to characterise the bacteria according to the types of the CqC_{q} curves of their noncoding length sequences.Comment: 15 pages with 5 figures, Latex, Accepted for publication in Physica

    Similar works

    Full text

    thumbnail-image