Recently it has been discovered that some nonlinear evolution equations in
2+1 dimensions, which are integrable by the use of the Spectral Transform,
admit localized (in the space) soliton solutions. This article briefly reviews
some of the main results obtained in the last five years thanks to the renewed
interest in soliton theory due to this discovery. The theoretical tools needed
to understand the unexpected richness of behaviour of multidimensional
localized solitons during their mutual scattering are furnished. Analogies and
especially discrepancies with the unidimensional case are stressed