research

New stability results for long-wavelength convection patterns

Abstract

We consider the transition from a spatially uniform state to a steady, spatially-periodic pattern in a partial differential equation describing long-wavelength convection. This both extends existing work on the study of rolls, squares and hexagons and demonstrates how recent generic results for the stability of spatially-periodic patterns may be applied in practice. We find that squares, even if stable to roll perturbations, are often unstable when a wider class of perturbations is considered. We also find scenarios where transitions from hexagons to rectangles can occur. In some cases we find that, near onset, more exotic spatially-periodic planforms are preferred over the usual rolls, squares and hexagons.Comment: 25 pages, 8 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions