research

Random Matrices and Chaos in Nuclear Spectra

Abstract

We speak of chaos in quantum systems if the statistical properties of the eigenvalue spectrum coincide with predictions of random-matrix theory. Chaos is a typical feature of atomic nuclei and other self-bound Fermi systems. How can the existence of chaos be reconciled with the known dynamical features of spherical nuclei? Such nuclei are described by the shell model (a mean-field theory) plus a residual interaction. We approach the question by using a statistical approach (the two-body random ensemble): The matrix elements of the residual interaction are taken to be random variables. We show that chaos is a generic feature of the ensemble and display some of its properties, emphasizing those which differ from standard random-matrix theory. In particular, we display the existence of correlations among spectra carrying different quantum numbers. These are subject to experimental verification.Comment: 17 pages, 20 figures, colloquium article, submitted to Reviews of Modern Physic

    Similar works