research

Theoretical Study on Rotational Bands and Shape Coexistence of 183,185,187^{183,185,187}{Tl} in the Particle Triaxial-Rotor Model

Abstract

By taking the particle triaxial-rotor model with variable moment of inertia, we investigate the energy spectra, the deformations and the single particle configurations of the nuclei 183,185,187^{183,185,187}Tl systemically. The calculated energy spectra agree with experimental data quite well. The obtained results indicate that the aligned bands observed in 183,185,187^{183,185,187}Tl originate from the [530]1/2−[530]{{1/2}}^{-}, [532]3/2−[532]{{3/2}}^{-}, [660]1/2+[660]{{1/2}}^{+} proton configuration coupled to a prolate deformed core, respectively. Whereas, the negative parity bands built upon the 9/2−{{9/2}}^{-} isomeric states in 183,185,187^{183,185,187}Tl are formed by a proton with the [505]9/2−[505]{{9/2}}^{-} configuration coupled to a core with triaxial oblate deformation, and the positive parity band on the 13/2+{{13/2}}^{+} isomeric state in 187^{187}Tl is generated by a proton with configuration [606]13/2+[606]{{13/2}}^{+} coupled to a triaxial oblate core.Comment: 16 pages, 5 figures. To appear in Physical Review

    Similar works