We develop a perturbative model to treat the off-diagonal components in the
Hartree-Fock-Bogoliubov (HFB) transformation matrix, which are neglected in the
BCS approximation. Applying the perturbative model to a weakly bound nucleus
84Ni, it is shown that the perturbative approach reproduces well the
solutions of the HFB method both for the quasi-particle energies and the radial
dependence of quasi-particle wave functions. We find that the non-resonant part
of the continuum single-particle state can acquire an appreciable occupation
probability when there exists a weakly bound state close to the Fermi surface.
This result originates from the strong coupling between the continuum particle
state and the weakly bound state, and is absent in the BCS approximation. The
limitation of the BCS approximation is pointed out in comparison with the HFB
and the present perturbative model.Comment: 6 pages, 5 eps figure