Abstract

We study kaonic deuterium, the bound K^-d state A_(K d). Within a quantum field theoretic and relativistic covariant approach we derive the energy level displacement of the ground state of kaonic deuterium in terms of the amplitude of K^-d scattering for arbitrary relative momenta. Near threshold our formula reduces to the well-known DGBT formula. The S-wave amplitude of K^-d scattering near threshold is defined by the resonances Lambda(1405), Sigma(1750) and a smooth elastic background, and the inelastic channels K^- d -> NY and K^- d -> NY pion, with Y = Sigma^(+/-), Sigma^0 and Lambda^0, where the final-state interactions play an important role. The Ericson-Weise formula for the S-wave scattering length of K^-d scattering is derived. The total width of the energy level of the ground state of kaonic deuterium is estimated using the theoretical predictions of the partial widths of the two-body decays A_(Kd) -> NY and experimental data on the rates of the NY-pair production in the reactions K^-d -> NY. We obtain Gamma_{1s} = (630 +/-100) eV. For the shift of the energy level of the ground state of kaonic deuterium we predict epsilon_(1s) = (353 +/-60)eV.Comment: 73 pages,10 figures, Latex, We have slightly corrected the contribution of the double scattering. The change of the S-wave scattering length of K^-d scattering does not go beyond the theoretical uncertainty, which is about 18

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019
    Last time updated on 27/12/2021