research

Finite temperature effects in antiferromagnetism of nuclear matter

Abstract

The influence of the finite temperature on the antiferromagnetic (AFM) spin ordering in symmetric nuclear matter with the effective Gogny interaction is studied within the framework of a Fermi liquid formalism. It is shown that the AFM spin polarization parameter of partially polarized nuclear matter for low enough temperatures increases with temperature. The entropy of the AFM spin state for some temperature range is larger than the entropy of the normal state. Nerveless, the free energy of the AFM spin state is always less than the free energy of the normal state and, hence, the AFM spin polarized state is preferable for all temperatures below the critical temperature.Comment: To appear in PRC; some references and comments adde

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019
    Last time updated on 27/12/2021