A fully self-consistent treatment of short-range correlations in nuclear
matter is presented. Different implementations of the determination of the
nucleon spectral functions for different interactions are shown to be
consistent with each other. The resulting saturation densities are closer to
the empirical result when compared with (continuous-choice)
Brueckner-Hartree-Fock values. Arguments for the dominance of short-range
correlations in determining the nuclear-matter saturation density are
presented. A further survey of the role of long-range correlations suggests
that the inclusion of pionic contributions to ring diagrams in nuclear matter
leads to higher saturation densities than empirically observed. A possible
resolution of the nuclear-matter saturation problem is suggested.Comment: 5 pages, 1 figure, to be published in Phys.Rev.Let