We calculate, for the first time, the state-dependent pairing gap of a finite
nucleus (120Sn) diagonalizing the bare nucleon-nucleon potential (Argonne v14)
in a Hartree-Fock basis (with effective k-mass m_k eqult to 0.7 m), within the
framework of the BCS approximation including scattering states up to 800 MeV
above the Fermi energy to achieve convergence. The resulting gap accounts for
about half of the experimental gap. We find that a consistent description of
the low-energy nuclear spectrum requires, aside from the bare nucleon-nucleon
interaction, not only the dressing of single-particle motion through the
coupling to the nuclear surface, to give the right density of levels close to
the Fermi energy (and thus an effective mass m* approximately equal to m), but
also the renormalization of collective vibrational modes through vertex and
self-energy processes, processes which are also found to play an essential role
in the pairing channel, leading to a long range, state dependent component of
the pairing interaction. The combined effect of the bare nucleon-nucleon
potential and of the induced pairing interaction arising from the exchange of
low-lying surface vibrations between nucleons moving in time reversal states
close to the Fermi energy accounts for the experimental gap.Comment: 5 pages, 4 figures; author list correcte