research

Equation of state of quark-nuclear matter

Abstract

Quark-nuclear matter (QNM) is a many-body system containing hadrons and deconfined quarks. Starting from a microscopic quark-meson coupling (QMC) Hamiltonian with a density dependent quark-quark interaction, an effective quark-hadron Hamiltonian is constructed via a mapping procedure. The mapping is implemented with a unitary operator such that composites are redescribed by elementary-particle field operators that satisfy canonical commutation relations in an extended Fock space. Application of the unitary operator to the microscopic Hamiltonian leads to effective, hermitian operators that have a clear physical interpretation. At sufficiently high densities, the effective Hamiltonian contains interactions that lead to quark deconfinement. The equation of state of QNM is obtained using standard many-body techniques with the effective quark-hadron Hamiltonian. At low densities, the model is equivalent to a QMC model with confined quarks. Beyond a critical density, when quarks start to deconfine, the equation of state predicted for QNM is softer than the QMC equation of state with confined quarks.Comment: 10 pages, ws-procs9x6.cls (included), 2 eps figures, to appear in the Proceedings of the Joint CSSM/JHF Workshop, Adelaide, March 14-21, 200

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019