research

Testing Dirac-Brueckner models in collective flow of heavy-ion collisions

Abstract

We investigate differential in-plane and out-of-plane flow observables in heavy ion reactions at intermediate energies from 0.2÷20.2\div 2 AGeV within the framework of relativistic BUU transport calculations. The mean field is based on microscopic Dirac-Brueckner-Hartree-Fock (DBHF) calculations. We apply two different sets of DBHF predictions, those of ter Haar and Malfliet and more recent ones from the T\"ubingen group, which are similar in general but differ in details. The latter DBHF calculations exclude spurious contributions from the negative energy sector to the mean field which results in a slightly softer equation of state and a less repulsive momentum dependence of the nucleon-nucleus potential at high densities and high momenta. For the application to heavy ion collisions in both cases non-equilibrium features of the phase space are taken into account on the level of the effective interaction. The systematic comparison to experimental data favours the less repulsive and softer model. Relative to non-relativistic approaches one obtains larger values of the effective nucleon mass. This produces a sufficient amount of repulsion to describe the differential flow data reasonably well.Comment: 14 pages Revtex, 19 figures, discussion extended and two figures added, accepted for publication in EPJ

    Similar works