Measures to minimize greenhouse gas emissions from slurry storage

Abstract

Kunskap om effektiva, funktionella och ekonomiska åtgärder krävs för att säkerställa små utsläpp av växthusgaser från lager med både orötad och rötad gödsel. I detta treåriga projekt har olika tänkbara åtgärder i flytgödsellager studerats genom mätning av växthusgaserna metan och lustgas under sommarförhållanden. Åtgärder som förlängd utrötningstid och surgörning av gödsel med svavelsyra, har utvärderats i RISE pilotskaleanläggning för lagring av flytgödsel. Åtgärder för att minska lustgasemissioner bildat i svämtäcke på gödselyta i ett fullskalelager har studerats på gårdsnivå. Kompletterande teoretiska beräkningar har utförts för att bedöma effekten av att täcka flytgödsellager samt laboratoriestudier av temperaturens påverkan på metangas-emissionerna. Grundläggande är att temperaturen har stor betydelse, vilket visades i laboratorieskalan. Vid ökad temperatur ökade metanproduktionen exponentiellt för rötad gödsel medan för orötad gödsel var ökningen betydligt mindre. De teoretiska värmebalansberäkningarna för lager med gödsel visade att beskuggning av gödselytan eller täckning av lager med vitt tak bör kunna reducera denna uppvärmning kraftigt på våren eftersom värmeinstrålningen från solljus till gödsellager kan förklarade största delen av gödselns uppvärmning. Studierna under första och sista året visade att metanemissionerna var signifikant större från gödseln när den var rötad än om den var orötad. Sammanlagda förlusterna av metan var 2,5 respektive fyra gånger så höga från den rötade gödseln under sommarlagringarna (ca fyra månader). Det betyder att det är speciellt viktigt att sätta in åtgärder vid lagring av rötad gödsel för att begränsa utsläppen av metan och därmed minska klimatpåverkan. En åtgärd för att få lägre metanemissioner från den rötade gödseln är att förlänga utrötningstiden, dvs. den hydrauliska uppehållstiden i rötkammaren. Studierna år 1 visar att vid en fördubblad uppehållstid, 48 dagar istället för 24 dagar, minskade metanemissionerna från lagret med 30 procent. På gårdar med rötningsanläggningar är ett gastätt tak med uppsamling av biogasen också en bra åtgärd för att effektivisera anläggningen och förhindra utsläpp av klimatgaser från lagret. Surgörning av flytgödsel med svavelsyra praktiseras främst i Danmark för att minska ammoniakavgången från flytgödsel, i stall, lager och vid spridning. Resultaten visar att det är en mycket effektiv metod för att minimera metangasemissionerna från lager med en reduktion med mer än 90 procent både för orötad och för rötad gödsel. Speciellt för gödselslag där det inte bildas naturligt svämtäcke kan surgörning vara intressant för att minska både ammoniak- och metanemissioner. Åtgärder som surgörning av svämtäcket för att minska lustgasemissioner visade sig inte behövas eftersom lustgasemissionerna var relativt låga, trots att svämtäcket var bortåt en halv meter tjockt. Den finhackade halmen som användes som strö, bildade ett slätt och tätt svämtäcke på gödselytan vilket troligen hämmande lustgasbildningen, till följd av att luften inte kunde penetrera skiktet. Så finhackningen av halmströ kan eventuellt vara i sig en tänkbar åtgärd, vilket också kan minska ströåtgången. Metanproduktionen från en rötkammare är ofta svår att mäta, och beräknas därför ofta indirekt utifrån producerad elproduktion. Ett exempel på nyckeltal för att visa klimateffektiviteten hos anläggningen visas där metanemissionerna från lager under sommaren var 10,2 % av producerad mängd metan från rötkammare vid enstegsrötning under 24 dagar respektive 5,5 % vid tvåstegsrötning under 48 dagar. På årsbasis blir procenttalen betydligt lägre eftersom emissionerna är låga under vintern.Ensuring low emissions of greenhouse gases from both undigested and digested animal slurry in storage requires a knowledge of effective, functional and economic measures. This three-year project has studied various potential measures for use in slurry storage. The greenhouse gases methane and nitrous oxide have been measured under summer conditions. Measures such as extended digestion time and acidification of slurry with sulfuric acid have been evaluated in a RISE pilot-scale plant for slurry storage. Measures to reduce nitrous oxide emissions formed in floating crust in a full-scale storage have been studied at farm level. Complementary theoretical calculations have been carried out to assess the effect of covering slurry stores. The impact of temperature on methane emissions has been studied in the laboratory. The fundamental point demonstrated on the laboratory scale is that the temperature is highly significant. As the temperature rose, methane production increased exponentially for digested slurry. For undigested slurry, the increase was considerably less. Most of the heat gained by the slurry can be attributed to solar radiation. Theoretical thermal balance calculations for slurry in storage indicated that it should be possible to reduce this heating significantly in spring by shading the slurry surface or provide the storage with a white roof. The studies in years 1 and 3 showed that methane emissions were significantly greater from digested than from undigested slurry. The total loss of methane from digested slurry was 2.5 and four times higher, respectively, during summer storage (approx. four months). It is therefore particularly important to implement measures to limit methane emissions from digested slurry in storage, thereby reducing the impact on the climate. One way to achieve lower methane emissions from digested slurry is to extend the duration of digestion, i.e. the hydraulic retention time in the digester. The studies in year 1 showed that doubling the retention time from 24 to 48 days reduced methane emissions from storage by 30 percent. At farms with digestion plants, a gas-tight roof with biogas collection is also an effective way to make the plant more efficient and prevent emissions of greenhouse gases from storage. Acidification of slurry with sulfuric acid is practiced in Denmark, to reduce ammonia emissions from slurry in housing, in storage and during spreading. The results show that it is also a very effective method for minimizing methane emissions from storage, with a reduction of more than 90 percent for both undigested and digested slurry. Acidification may be of interest as a way of reducing emissions of both ammonia and methane, particularly for types of slurry that do not naturally form a floating crust. Measures such as acidification of the floating crust to reduce nitrous oxide emissions did not prove to have effect because nitrous oxide emissions were relatively low, despite the floating crust being nearly half a metre thick. The chopped straw used for litter formed a smooth and dense floating crust on the surface of the slurry, and probably inhibited nitrous oxide formation because air was unable to penetrate the layer. Chopped straw litter in itself could therefore be a potential measure. This might also reduce straw consumption. Methane production from a digester is often difficult to measure and is therefore often calculated indirectly from the electricity produced. An example of key indicator for the climatic efficiency of the plant is given. For storage in summer, 10.2% of the methane produced was emitted during one-stage digestion over 24 days, and 5.5% during two-stage digestion over 48 days. The annual percentages are considerably lower because of low emissions in winter

    Similar works