research

Search for emission of unstable 8^8Be clusters from hot 40^40Ca and 56^56Ni nuclei

Abstract

The possible occurence of highly deformed configurations is investigated in the 40^{40}Ca and 56^{56}Ni di-nuclear systems as formed in the 28^{28}Si + 12^{12}C and 28^{28}Si + 28^{28}Si reactions, respectively, by using the properties of emitted light charged particles. Inclusive as well as exclusive data of the heavy fragments (A \geq 6) and their associated light charged particles (p, d, t, and α\alpha-particles) have been collected at the IReS Strasbourg VIVITRON Tandem facility with two bombarding energies Elab(28E_{lab}(^{28}Si) = 112 and 180 MeV by using the ICARE charged particle multidetector array, which consists of nearly 40 telescopes. The measured energy spectra, velocity distributions, in-plane and out-of-plane angular correlations are analysed by Monte Carlo CASCADE statistical-model calculations using a consistent set of parameters with spin-dependent level densities. Although significant deformation effects at high spin are needed, the remaining disagreement observed in the 28^{28}Si + 12^{12}C reaction for the S evaporation residue suggests an unexpected large unstable 8^{8}Be cluster emission of a binary nature.Comment: 13 pages latex, 9 eps figures. Paper presented at the XXXIX International Winter Meeting on Nuclear Physics, Bormio(Italy) January 22-27, 2001 (to be published at Ricerca Scientifica ed Educazione Permanente

    Similar works

    Full text

    thumbnail-image

    Available Versions