A class of discrete nonlinear Schrodinger equations with arbitrarily high
order nonlinearities is introduced. These equations are derived from the same
Hamiltonian using different Poisson brackets and include as particular cases
the saturable discrete nonlinear Schrodinger equation and the Ablowitz-Ladik
equation. As a common property, these equations possess three kinds of exact
analytical stationary solutions for which the Peierls-Nabarro barrier is zero.
Several properties of these solutions, including stability, discrete breathers
and moving solutions, are investigated