Identifying causal relations among simultaneously acquired signals is an
important problem in multivariate time series analysis. For linear stochastic
systems Granger proposed a simple procedure called the Granger causality to
detect such relations. In this work we consider nonlinear extensions of
Granger's idea and refer to the result as Extended Granger Causality. A simple
approach implementing the Extended Granger Causality is presented and applied
to multiple chaotic time series and other types of nonlinear signals. In
addition, for situations with three or more time series we propose a
conditional Extended Granger Causality measure that enables us to determine
whether the causal relation between two signals is direct or mediated by
another process.Comment: 16 pages, 6 figure