We consider a dynamical system given by an area-preserving map on a
two-dimensional phase plane and consider a one-dimensional line of initial
conditions within this plane. We record the number of iterates it takes a
trajectory to escape from a bounded region of the plane as a function along the
line of initial conditions, forming an ``escape-time plot''. For a chaotic
system, this plot is in general not a smooth function, but rather has many
singularities at which the escape time is infinite; these singularities form a
complicated fractal set. In this article we prove the existence of regular
repeated sequences, called ``epistrophes'', which occur at all levels of
resolution within the escape-time plot. (The word ``epistrophe'' comes from
rhetoric and means ``a repeated ending following a variable beginning''.) The
epistrophes give the escape-time plot a certain self-similarity, called
``epistrophic'' self-similarity, which need not imply either strict or
asymptotic self-similarity.Comment: 15 pages, 9 figures, to appear in Chaos, first of two paper