Abstract

We obtain exact analytical results for lattices of maps with couplings that decay with distance as rαr^{-\alpha}. We analyze the effect of the coupling range on the system dynamics through the Lyapunov spectrum. For lattices whose elements are piecewise linear maps, we get an algebraic expression for the Lyapunov spectrum. When the local dynamics is given by a nonlinear map, the Lyapunov spectrum for a completely synchronized state is analytically obtained. The critical lines characterizing the synchronization transition are determined from the expression for the largest transversal Lyapunov exponent. In particular, it is shown that in the thermodynamical limit, such transition is only possible for sufficiently long-range interactions, namely, for αalphac<d\alpha\le alpha_c<d, where dd is the lattice dimension.Comment: 4 pages, 2 figures, corrections included. Phys. Rev. E 68, 045202(R) (2003); correction in pres

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 27/12/2021
    Last time updated on 03/01/2020