In this paper we discuss the bihamiltonian formulation of the (rational XXX)
Gaudin models of spin-spin interaction, generalized to the case of sl(r)-valued
spins. In particular, we focus on the homogeneous models. We find a pencil of
Poisson brackets that recursively define a complete set of integrals of the
motion, alternative to the set of integrals associated with the 'standard' Lax
representation of the Gaudin model. These integrals, in the case of su(2),
coincide wih the Hamiltonians of the 'bending flows' in the moduli space of
polygons in Euclidean space introduced by Kapovich and Millson. We finally
address the problem of separability of these flows and explicitly find
separation coordinates and separation relations for the r=2 case.Comment: 27 pages, LaTeX with amsmath and amssym