We investigate the energy relaxation process produced by thermal baths at
zero temperature acting on the boundary atoms of chains of classical anharmonic
oscillators. Time-dependent perturbation theory allows us to obtain an explicit
solution of the harmonic problem: even in such a simple system nontrivial
features emerge from the interplay of the different decay rates of Fourier
modes. In particular, a crossover from an exponential to an inverse-square-root
law occurs on a time scale proportional to the system size N. A further
crossover back to an exponential law is observed only at much longer times (of
the order N3). In the nonlinear chain, the relaxation process is initially
equivalent to the harmonic case over a wide time span, as illustrated by
simulations of the β Fermi-Pasta-Ulam model. The distinctive feature is
that the second crossover is not observed due to the spontaneous appearance of
breathers, i.e. space-localized time-periodic solutions, that keep a finite
residual energy in the lattice. We discuss the mechanism yielding such
solutions and also explain why it crucially depends on the boundary conditions.Comment: 16 pages, 6 figure