The Effects of Particle Morphology (Shape and Sizes) Characteristics on its Engineering Behaviour and Sustainable Engineering Performance of Sand

Abstract

The mechanical behaviour of granular soil is interestingly dependent on the characteristics of the particles. The wide range of particle shapes and size distribution of sand, by virtue of its sedimentological process of formation plays a significant factor in the influence on its engineering behaviour reflected in terms of its packing density, permeability, shear strength and dilatancy. In this study, research on well graded sand (SW), poorly graded uniform sand (SPuKahang), gap graded sand (SPg) from Kahang Malaysia and also (SPuL.Buzzard) Leighton Buzzard sand from UK were tested in a direct shear box. The shapes were quantified using images from a digital microscope where its morphological features can lead via statistical methods to determined correlations between strength and its physical properties. The research effort focuses in obtaining its shear strength and roughness parameters and also its extreme packing (emin and emax). Results from published studies on related matter and also the study on permeability are presented. The findings would lead to a better way to classify the shape and size distribution for the assessment of the behaviour of sand in various engineering disciplines such a good foundation soil in geotechnical engineering, as an abrasive material in mechanical engineering, as a filler of concrete in civil engineering, as a filter in chemical engineering and occurs as oil sands in petroleum engineering

    Similar works