Prototyping and Evaluation of Infrastructure-assisted Transition of Control for Cooperative Automated Vehicles

Abstract

Automated driving is now possible in diverse road and traffic conditions. However, there are still situations that automated vehicles cannot handle safely and efficiently. In this case, a Transition of Control (ToC) is necessary so that the driver takes control of the driving. Executing a ToC requires the driver to get full situation awareness of the driving environment. If the driver fails to get back the control in a limited time, a Minimum Risk Maneuver (MRM) is executed to bring the vehicle into a safe state (e.g., decelerating to full stop). The execution of ToCs requires some time and can cause traffic disruption and safety risks that increase if several vehicles execute ToCs/MRMs at similar times and in the same area. This study proposes to use novel C-ITS traffic management measures where the infrastructure exploits V2X communications to assist Connected and Automated Vehicles (CAVs) in the execution of ToCs. The infrastructure can suggest a spatial distribution of ToCs, and inform vehicles of the locations where they could execute a safe stop in case of MRM. This paper reports the first field operational tests that validate the feasibility and quantify the benefits of the proposed infrastructure-assisted ToC and MRM management. The paper also presents the CAV and roadside infrastructure prototypes implemented and used in the trials. The conducted field trials demonstrate that infrastructure-assisted traffic management solutions can reduce safety risks and traffic disruption

    Similar works